FINAL ENVIRONMENTAL ASSESSMENT

Proposed Ambulatory Care Center

Nebraska-Western Iowa Health Care System
Omaha Veterans Affairs Medical Center

January 2018

Prepared for:
U.S. Department of Veterans Affairs
Nebraska-Western Iowa Health Care System
Omaha Veterans Affairs Medical Center
4101 Woolworth avenue, Omaha, NE 68105

Prepared by:
Olsson Associates
2111 S. 67th Street, Suite 200
Omaha, NE 68106
Table of Contents

Executive Summary .. 1
1.0 Introduction .. 7
 1.1 Background ... 7
 1.2 Purpose and Need ... 11
 1.2.1 Space Deficiencies .. 11
 1.2.2 Functional Deficiencies .. 11
 1.2.3 Technical Deficiencies ... 12
2.0 ACC Alternatives ... 14
 2.1.1 Alternative 1 – No-Action Alternative ... 14
 2.1.2 Alternative 2 – New On-site ACC .. 14
 2.1.3 Alternative 3 – New Off-site ACC .. 14
 2.1.4 Alternative 4 – Third-Party Contracting .. 14
2.2 ACC Alternatives Eliminated from Consideration ... 14
2.3 ACC Alternative Concepts Retained for Detailed Analysis ... 15
 2.3.1 No-Action Alternative ... 15
 2.3.2 Proposed Action Alternative ... 15
3.0 Affected Environment and Environmental Consequences of the Alternatives 23
 3.1 Aesthetics ... 23
 3.1.1 Definition of the Resource .. 23
 3.1.2 Affected Environment ... 23
 3.1.3 Environmental Consequences .. 23
 3.2 Air Quality .. 25
 3.2.1 Definition of the Resource .. 25
 3.2.2 Affected Environment ... 26
 3.2.3 Environmental Consequences .. 27
 3.3 Cultural Resources .. 27
 3.3.1 Definition of the Resource .. 27
 3.3.2 Affected Environment ... 28
 3.3.3 Environmental Consequences .. 29
 3.4 Geology and Soils .. 30
 3.4.1 Definition of the Resource .. 30
 3.4.2 Affected Environment ... 30
3.4.3 Environmental Consequences ... 34
3.5 Hydrology and Water Quality .. 35
 3.5.1 Definition of the Resource ... 35
 3.5.2 Affected Environment .. 35
 3.5.3 Environmental Consequences .. 38
3.6 Wildlife, Habitat, and Threatened and Endangered Species 38
 3.6.1 Definition of the Resource ... 38
 3.6.2 Affected Environment .. 39
 3.6.3 Environmental Consequences .. 41
3.7 Noise ... 43
 3.7.1 Definition of the Resource ... 43
 3.7.2 Affected Environment .. 43
 3.7.3 Environmental Consequences .. 43
3.8 Land Use .. 44
 3.8.1 Definition of the Resource ... 44
 3.8.2 Affected Environment .. 44
 3.8.3 Environmental Consequences .. 46
3.9 Floodplains and Wetlands .. 46
 3.9.1 Definition of the Resource ... 46
 3.9.2 Affected Environment .. 47
 3.9.3 Environmental Consequences .. 47
3.10 Socioeconomic .. 49
 3.10.1 Definition of the Resource ... 49
 3.10.2 Affected Environment .. 49
 3.10.3 Environmental Consequences .. 50
3.11 Transportation and Parking ... 52
 3.11.1 Definition of the Resource ... 52
 3.11.2 Affected Environment .. 52
 3.11.3 Environmental Consequences .. 53
3.12 Solid and Hazardous Materials .. 59
 3.12.1 Definition of the Resource ... 59
 3.12.2 Affected Environment .. 59
 3.12.3 Environmental Consequences .. 60
3.13 Utilities .. 61
3.13.1 Definition of the Resource ... 61
3.13.2 Affected Environment ... 61
3.13.3 Environmental Consequences .. 62

3.14 Environmental Justice ... 67
3.14.1 Definition of the Resource ... 67
3.14.2 Affected Environment ... 67
3.14.3 Environmental Consequences .. 68

3.15 Cumulative Impacts and Past, Present, and Reasonably Foreseeable Future Actions .. 69
3.15.1 Past, Present, and Reasonably Foreseeable Future Actions 70
3.15.2 Cumulative Impacts ... 71
3.15.3 Secondary Impacts .. 72
3.15.4 Conclusion ... 72

3.16 Potential for Generating Substantial Controversy 73

4.0 Public Involvement ... 74

5.0 Mitigation ... 75

6.0 Conclusion .. 80

7.0 List of Preparers .. 83

8.0 References .. 84

Tables
Table ES-1. Environmental Consequences of the Proposed Action Summary 4
Table 3-1. National Ambient Air Quality Standards ... 26
Table 3-2. AQI for Douglas County in 2017 .. 26
Table 3-3. NHRP Listings in Douglas County, Nebraska Within One Mile of the Omaha VAMC .. 29
Table 3-4. Federally and State Listed Species in Douglas County 40
Table 3-5. Race and Poverty Characteristics ... 67
Table 3-6. Common Social Concerns Potentially Affected by the Proposed Action Alternative .. 68
Table 3-7. Reasonably Foreseeable Future Transportation Projects Within Two Miles of the Omaha VAMC Campus .. 71
Table 6-1. Environmental Consequences of the Proposed Action Summary 80
Figures

Figure 1-1. Omaha VAMC Location Map ... 8
Figure 1-2. Omaha VAMC Site Map .. 9
Figure 1-3. Current Facility Plot Plan of the Omaha VAMC Campus 10
Figure 2-1. Proposed Ambulatory Care Center Site Plan 19
Figure 2-2. Proposed Ambulatory Care Center Schematic Rendering 20
Figure 2-3. Omaha VAMC Future Buildings ... 21
Figure 3-1. USGS 2014 Long-Term Seismic Hazard Map 31
Figure 3-2. Ecoregions of Nebraska Showing the Omaha VAMC Location in Red (NGPC NHP 2017a) ... 32
Figure 3-3. Omaha VAMC Soils Map ... 33
Figure 3-4. Water Resources Map ... 37
Figure 3-5. Distribution of the Northern Long-eared Bat Within Nebraska (NGPC NHP 2015) ... 41
Figure 3-6. Omaha VAMC Zoning Map ... 45
Figure 3-7. Omaha VAMC Wetland Map ... 48
Figure 3-8. Current OMetro Bus Routes ... 55
Figure 3-9. Parking Areas Impacted Due to the Proposed Action 56
Figure 3-10. Proposed Future OMetro Route 3 Due to the Proposed Action 57
Figure 3-11. Proposed Sanitary and Storm Sewer Improvements Due to the Proposed Action ... 65
Figure 3-12. Proposed Water Supply Improvements Due to the Proposed Action 66

Appendices

Appendix A Agency Correspondence
Appendix B EDR Report
Appendix C Public Involvement Documentation
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Ambulatory Care Center</td>
</tr>
<tr>
<td>ACS</td>
<td>American Community Survey</td>
</tr>
<tr>
<td>ADA</td>
<td>American with Disabilities Act</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effect</td>
</tr>
<tr>
<td>AQI</td>
<td>Air Quality Index</td>
</tr>
<tr>
<td>BDOC</td>
<td>Bed Days of Care</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHIP IN</td>
<td>Communities Helping Invest through Property and Improvements Needed</td>
</tr>
<tr>
<td>CSW</td>
<td>Construction Storm Water</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>dBA</td>
<td>Decibels</td>
</tr>
<tr>
<td>DGSF</td>
<td>Departmental Gross Square Feet</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resources</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Study Area</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
</tr>
<tr>
<td>IT</td>
<td>information technology</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>LAST</td>
<td>Aboveground Leaking Storage Tank</td>
</tr>
<tr>
<td>LUST</td>
<td>Leaking Underground Storage Tank</td>
</tr>
<tr>
<td>M</td>
<td>million</td>
</tr>
<tr>
<td>MAPA</td>
<td>Metropolitan Area Planning Agency</td>
</tr>
<tr>
<td>MUD</td>
<td>Metropolitan Utilities District</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NCA</td>
<td>Noise Control Act</td>
</tr>
<tr>
<td>NCSS</td>
<td>National Cooperative Soil Survey</td>
</tr>
<tr>
<td>NDEQ</td>
<td>Nebraska Department of Environmental Quality</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NGPC</td>
<td>Nebraska Game and Parks Commission Nebraska</td>
</tr>
<tr>
<td>NHP</td>
<td>Natural Heritage Program</td>
</tr>
<tr>
<td>NOA</td>
<td>Notice of Availability</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resource Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetlands Inventory</td>
</tr>
<tr>
<td>NWIHCS</td>
<td>Nebraska Western Iowa Health Care System</td>
</tr>
</tbody>
</table>
OFD Omaha Fire Department
OMetro Omaha Metro Bus System
OPPD Omaha Public Power District
OR(s) Operating Room(s)
PACT Patient Aligned Care Team
PCMH Patient Centered Medical Home Model
PL Public Law
ppb parts per billion
ppm parts per million
RCRA Resource Conservation and Recovery Act
SCIP Strategic Capital Investment Plan
SHPO State Historic Preservation Officer
SSC Species of Special Concern
SQG Small Quantity Generator
SWDA Solid Waste Disposal Act
SWPP Stormwater Pollution Prevention Plan
THPO Tribal Historic Preservation Office
UNMC University of Nebraska Medical Center
USACE United States Army Corps of Engineers
USC United States Code
USDA United States Department of Agriculture
USFWS United States Fish and Wildlife Service
USGS United States Geological Survey
UST(s) Underground Storage Tank(s)
VA Department of Veterans Affairs
VAMC Veterans Affairs Medical Center
VCP Vitrified Clay Pipe
WOTUS Waters of the United States
µg/m³ micrograms per cubic meter
Executive Summary

This Environmental Assessment (EA) evaluates the potential environmental effects that may result from the proposed construction of the Ambulatory Care Center (ACC) and related improvements (Proposed Action) at the Omaha Veterans Affairs Medical Center (VAMC). Specifically, the EA evaluates the significance of potential direct, indirect, and cumulative environmental impacts—both positive and negative—that the Proposed Action and alternatives may have on the environment, considering natural, social, and economic aspects. Moreover, the assessment ensures that the United States Department of Veterans Affairs (VA) considers the ensuing environmental consequences prior to deciding on whether to proceed with the Proposed Action or alternatives.

Background

The Omaha VAMC is in Omaha, Douglas County, Nebraska. The Omaha VAMC is part of a regional network of VA facilities that make up the Nebraska-Western Iowa Health Care System (NWIHCS). The Omaha VAMC provides a wide array of core services including:

- Inpatient care,
- general medical care,
- inpatient and outpatient surgical care,
- psychiatric care,
- ambulatory care services, and
- clinical research programs.

The Omaha VAMC campus dates to approximately 1950, when the hospital was designed and constructed as a 500-bed general medical facility. Most functions of the Omaha VAMC take place in the main hospital building, although ancillary structures have been constructed over time to provide for additional services. The main hospital building was not designed to fulfill the needs of a modern medical facility, and numerous space, functional, and technical deficiencies affect most departments. Future Omaha VAMC workload projections show a significant increase for nearly all services, including medical/surgical ambulatory care, rehabilitation medicine, surgical specialties, ambulatory mental health, laboratory and pathology service, and radiology service. The Proposed Action, to construct a new ACC, would provide a necessary component to improving patient care and satisfaction at the Omaha VAMC.

Purpose and Need

The purpose of the project is to provide improved ambulatory care services to veterans in the VA NWIHCS service area.

The proposed project is needed to address the growing health care needs of the Omaha VAMC and patient population. The existing Omaha VAMC has numerous technical issues due to aging infrastructure, as well as space and functional deficiencies. The existing Omaha VAMC:

- Lacks adequate space to meet projected future clinic stops and patient needs;
• Does not allow for the integration of related health care services and staff due to the dated nature of the existing facilities, causing unintentional fragmentation of services and staff that does not align with the Patient Aligned Care Team (PACT) model aiming provide patient-centric care, using a foundation of primary care services linking patients with specialty services; and
• Houses operating rooms (ORs) cited with infection control deficiencies related to space limitations that potentially compromise sterile conditions, will not accommodate modern equipment, or permit the required separation of clean and dirty corridors for equipment, patients, and staff.

The proposed project would promote patient care and safety, maintain Omaha VAMC facility cohesiveness, increase efficiency, and improve patient and staff satisfaction.

Alternatives

Four alternative concepts were developed. These alternatives included:

1. No-Action Alternative,
2. New On-site ACC: Constructing a new Ambulatory Care Center (ACC) at the existing Omaha VAMC campus,
3. New Off-site ACC: Relocating Ambulatory Care services to an existing or new facility off-site of the Omaha VAMC campus, and
4. Third-Party Contracting: Providing Ambulatory Care services off-site of the Omaha VAMC via a non-Omaha VAMC contracted health care provider.

Alternatives 3 and 4 were eliminated from consideration as both concepts would not fit the PACT model, perpetuating the fragmentation of services and staff by isolating Ambulatory Care at the expense of the patient. Primary care services would become more isolated and disconnected from specialty clinics and services. To varying degrees, Alternatives 3 and 4 would also require duplication of some clinical support facilities (mechanical and technical), and administration and staff positions to effectively manage the new site.

Two concepts were carried forward for detailed analysis: Alternative 1 – No-Action Alternative; and Alternative 2 – New On-site ACC (Proposed Action). Inclusion of a No-Action Alternative is prescribed by the Council on Environmental Quality (CEQ) regulations and serves as a benchmark against which proposed Federal actions are evaluated.

Proposed Action

The Proposed Action is based on retaining all the services at the Omaha VAMC and constructing a new ACC on site to replace the existing deficient facilities. The Proposed Action consists of constructing an approximately 160,000 square-foot building to support ambulatory surgery, PACT clinical care, lobby, police service, radiology, support, and reception spaces on the existing Omaha VAMC campus. The new facility would include all electrical, mechanical and structural
space to support the building as well as a 3,000 square-foot connecting corridor to the main hospital building.

This new onsite ACC would be dedicated to ambulatory care, allowing for new primary care clinics to be designed and constructed to meet the needs of each PACT team, including providing appropriate women veterans health care space. This new building would also allow expansion of the ambulatory surgery portion of the ORs, with more complicated surgery procedures remaining at the medical center main hospital building. While the Proposed Action does not completely mitigate the current Omaha VAMC OR space needs with regards to infection control deficiencies, modern equipment requirements, and clean/dirty corridor separation for equipment, patients, and staff; it does ensure that ambulatory surgery procedures could be conducted in an infection-free environment.

Areas of the main hospital building vacated by Ambulatory Care services would allow for the expansion, reorganization, and/or consolidation of ORs and other Omaha VAMC services. This would alleviate congestion and fragmentation of services, contributing to improved patient care. Constructing the new ACC at the Omaha VAMC main campus would promote the seamless integration of Ambulatory Care with additional Omaha VAMC services, increasing patient satisfaction and improving the overall patient experience.

The Proposed Action would temporarily reduce available parking, with additional parking provided by planned future projects. Pedestrian facilities would be significantly upgraded and would be compliant with the Americans with Disabilities Act (ADA). The Proposed Action would also provide two options for patient loading and unloading by maintaining the primary entrance at the main hospital building and construction a new primary entrance at the new ACC.

The new ACC would be a state-of-the-art facility, constructed according to modern medical facility standards, and would include new mechanical, electrical, and information technology (IT) systems currently lacking in the main hospital building. The existing sewer system and water lines directly serving the new ACC would also be upgraded.

Affected Environmental and Environmental Consequences of the Proposed Action

This EA discusses environmental considerations for the project, the contextual setting of the affected environment, impacts of the No-Build Alternative and the Proposed Action, and proposed mitigation. Table ES-1 summarizes the environmental consequences of the No-Action Alternative and the Proposed Action. As previously discussed, inclusion of the No-Action Alternative serves as a benchmark against which potential impacts of the Proposed Action are evaluated.
Table ES-1 Environmental Consequences of the Proposed Action Summary

<table>
<thead>
<tr>
<th>Resource</th>
<th>No-Action Alternative</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts expected. The new ACC would be compatible with the existing Omaha VAMC campus facilities. The new ACC would not impact views from adjacent or distant locations. Short-term temporary negative impacts may result during construction.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts expected. Short-term temporary increases in emissions expected during construction. Short-term negative impacts would be mitigated with the implementation of Best Management Practices (BMPs) to limit dust and engine exhaust. Intermittent short-term negative impacts to local air quality would also result during power outages due to the operation of a backup generator.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No change from current conditions</td>
<td>No Impact to historic properties</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts expected. Soil compaction and modifications to site topography would be required for the new ACC. Soil erosion and/or contamination would be controlled by implementing standard BMPs for erosion and sediment control, equipment refueling, and fuel and chemical spill clean-up.</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts expected. Short-term impacts to water resources from increased storm water runoff, erosion, and sedimentation due to construction activities would be limited. BMPs to control erosion and sedimentation and to properly manage runoff, and dispose of contaminated soil would be implemented. Long-term positive impacts include a reduction in stormwater runoff due to decreases in impervious surface.</td>
</tr>
<tr>
<td>Wildlife, Habitat, and Threatened and Endangered Species</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts. The site would be revegetated following construction. Tree clearing activities would be limited to avoid birds and bat impacts.</td>
</tr>
<tr>
<td>Resource</td>
<td>No-Action Alternative</td>
<td>Proposed Action</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Noise</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts. Short-term noise impacts due to construction would be minor, and mitigated by implementing time-of-day limitations and equipment BMPs as needed.</td>
</tr>
<tr>
<td>Land Use</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts. The new ACC would be consistent with existing land uses and zoning.</td>
</tr>
<tr>
<td>Floodplains and Wetlands</td>
<td>No change from current conditions</td>
<td>No significant long-term or short-term negative impacts. No wetlands or floodplains are present.</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>No change from current conditions. Possible long-term negative impact as Omaha VAMC facilities are not currently adequate to meet community needs.</td>
<td>Long-term positive impact expected as Omaha VAMC services improved.</td>
</tr>
<tr>
<td>Transportation and Parking</td>
<td>No change from current conditions</td>
<td>No significant negative long-term impacts. Short-term parking impacts would be mitigated with temporary off-site parking. Bus access would be maintained.</td>
</tr>
<tr>
<td>Solid and Hazardous Materials</td>
<td>No change from current conditions</td>
<td>No significant long-term negative impacts. BMP’s would be implemented for waste disposal and spill containment during construction. Significant increases in waste are not anticipated. Solid, hazardous, and biomedical waste would be managed according to current Omaha VAMC procedures.</td>
</tr>
<tr>
<td>Utilities</td>
<td>No change from current conditions</td>
<td>No significant negative long-term impacts. Long-term positive impact as the new ACC would include updated utility systems and back-up power generation.</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>No change from current conditions</td>
<td>No significant long-term impacts.</td>
</tr>
</tbody>
</table>

Public and Agency Involvement

The development of this EA included coordination and consultation with appropriate local, state, and federal agencies based on the potential impacts from the Proposed Action and the permits and approvals necessary for implementation. Project scoping letters were mailed out to various federal, state, and local agencies to solicit comments and feedback. The letters and responses are included in this EA as Appendix A.

An initial Notice of Intent (NOI) announcing the preparation of the Draft EA was published in the Omaha World-Herald on September 15, 2017.
Upon completion, the Draft EA was made available for public review online at https://www.nebraska.va.gov/, at the Omaha Public Library (W. Dale Clark Main Branch), and at the Omaha VAMC. The public review period and the Notice of Availability (NOA) of the Draft EA were advertised in the Omaha World Herald on December 20, 2017. Comments were accepted from agencies and the public during a 30-day public review period ending on January 19, 2018. No comments were received during the 30-day public review period.

Funding and Cost

The total cost of the Proposed Action is expected to be approximately $85 million (M). The VA cost of construction for this option is limited to $56M, the amount previously appropriated for the replacement hospital project as part of the long-term campus plan discussed in a 2009 Feasibility Study (VA 2009) and related 2012 Final EA document (VA 2012). Required funding in excess of $56M would be provided under the authority of Public Law (PL) 114-294, Communities Helping Invest through Property and Improvements Needed (CHIP IN) for Veterans Act of 2016, which allows the VA to accept donations for facilities at no additional cost to the government. As such, donors have been identified and funding has been allocated to construct and complete the new ACC as proposed in the VA Strategic Capital Investment Plan (SCIP) VHA23-636-2015-27431 (VA 2016).

This EA has been prepared in accordance with the requirements of the National Environmental Policy Act (NEPA) of 1969, (42 United States Code [USC] 4321-4347), CEQ Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and VA guidance for implementing NEPA (Environmental Effects of VA Actions [38 CFR 26]).
1.0 Introduction

This Environmental Assessment (EA) evaluates the potential environmental effects that may result from the proposed construction of the Ambulatory Care Center (ACC) and related improvements (Proposed Action) at the Omaha Veterans Affairs Medical Center (VAMC). Specifically, the EA evaluates the significance of potential direct, indirect, and cumulative environmental impacts—both positive and negative—that the Proposed Action and alternatives may have on the environment, considering natural, social, and economic aspects. Moreover, the assessment ensures that the United States Department of Veterans Affairs (VA) considers the ensuing environmental consequences prior to deciding on whether to proceed with the Proposed Action or alternatives.

This EA has been prepared in accordance with the requirements of the National Environmental Policy Act (NEPA) of 1969, (42 United States Code [USC] 4321-4347), Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and VA guidance for implementing NEPA (Environmental Effects of VA Actions [38 CFR 26]).

1.1 Background

The Omaha VAMC is located at 4101 Woolworth Avenue, Omaha, Douglas County, Nebraska (Figures 1-1 and 1-2). The Omaha VAMC is part of regional network of VA facilities that make up the Nebraska-Western Iowa Health Care System (NWIHCS). The Omaha VAMC provides a wide array of core services including:

- Inpatient care,
- General medical care,
- Inpatient and outpatient surgical care,
- Psychiatric care,
- Ambulatory care services, and
- Clinical research programs.

The Omaha VAMC campus dates to approximately 1950, when the hospital was designed and constructed as a 500-bed general medical facility. Since 1950, there have been two major additions: (1) a research building in 1975, and (2) an outpatient addition in 1987. The Omaha VAMC has affiliations with the University of Nebraska’s College of Medicine, Creighton University’s School of Medicine, and many other allied health facilities within the greater Omaha area and region. A site plan including all the current Omaha VAMC campus facilities can be found in Figure 1-3.

Most functions of the Omaha VAMC take place in the main hospital building; however, there are numerous technical issues with the aging infrastructure of this building, as well as space and functional issues in almost all departments. The Proposed Action, to construct a new ACC, would provide a necessary component to improving patient care and satisfaction at the Omaha VAMC.
Figure 1-3. Current Facility Plot Plan of the Omaha VAMC Campus
1.2 Purpose and Need

The purpose of the project is to provide improved ambulatory care services to veterans in the VA NWIHCS service area.

The proposed project is needed to address the growing health care needs of the Omaha VAMC and patient population. The existing Omaha VAMC has numerous technical issues due to aging infrastructure, as well as space and functional deficiencies. The proposed project would promote patient care and safety, maintain Omaha VAMC facility cohesiveness, increase efficiency, and improve patient and staff satisfaction.

1.2.1 Space Deficiencies

Future workload projections show a significant increase for nearly all Omaha VAMC services, including medical/surgical ambulatory care, rehabilitation medicine, surgical specialties, ambulatory mental health, laboratory and pathology service, and radiology service. Future projections were based upon estimated Bed Days of Care (BDOC) per patient visit. 2013 BDOC for Ambulatory Care were estimated to be 142,921. Projected 2023 and 2033 BDOC are 171,612 and 183,414, respectively. Compared to 2013, these projections represent a 20 percent increase in patient load by 2023, and a 28 percent increase in patient load by 2033 (VA 2016).

In 2009, GLHN Architects and Engineers, Inc. prepared a Feasibility Study for Correcting Space & Infrastructure Deficiencies (VA 2009) in the NWIHCS (Feasibility Study). Within this study, a base space program was established using workload projections for 2017. Based upon calculations provided in the 2009 Feasibility Study, the Omaha VAMC was projected to require 728,819 departmental gross square feet (DGSF) to meet current needs, representing a facility-wide deficit totaling 301,613 DGSF.

Specific to Ambulatory Care, year 2017 utilization space projections estimated a 43 percent increase in clinic stops requiring approximately 125,803 DGSF for Ambulatory Care. The existing DGSF at the Omaha VAMC dedicated to Ambulatory Care services is 73,964 DGSF, indicating a potential deficiency of 51,839 DGSF based upon 2017 projections (VA 2009).

More recent data is consistent with the 2017 projected need for increased DGSF dedicated to Ambulatory Care services. Projected Ambulatory Care patient loads are expected to require an additional 218,956 DGSF by 2025, a 36 percent space deficit. Projected space deficits for other services provided by the Omaha VAMC, such as Acute Care (6 percent surplus), Long-Term Care (100 percent surplus), and other non-clinical departments (19 percent deficit) are generally lower; representing less of an immediate space need (VA 2016).

1.2.2 Functional Deficiencies

As a part of the Feasibility Study, several significant functional issues with Ambulatory Care were identified at the Omaha VAMC. The dated nature of the existing facility does not allow for the integration of related health care services and staff. This prevents the Omaha VAMC from fully implementing the preferred Patient Centered Medical Home Model (PCMH) adopted by the VA in
2010, also referred to as Patient Aligned Care Team (PACT). PACT aims to provide unfragmented patient-centric care, using a foundation of primary care services that seamlessly link patients with specialty services. Ambulatory Care functions, including primary care spaces, are scattered throughout the facility and are not currently designed to meet PACT requirements. Spaces are fragmented and are not ideally configured for patient flow, staff efficiency, or sharing of equipment or services (VA 2009).

Existing operating rooms (ORs) housed within the Ambulatory Care units have been cited with infection control deficiencies, often related to space limitations that potentially compromise sterile conditions and will not accommodate modern equipment (VA 2016). The existing facilities do not allow for the required separation of clean and dirty corridors for equipment, patients, and staff.

1.2.3 Technical Deficiencies

Aside from direct needs for more DGSF dedicated to Ambulatory Care, the Feasibility Study identified accessibility and mechanical system deficiencies to the main hospital building which currently houses Ambulatory Care services at the Omaha VAMC.

Many sidewalks at the Omaha VAMC campus are deficient. Steeply sloping sidewalks are common, making navigation difficult for staff, visitors, and patients, many of whom may have limited mobility. These sidewalks become even more treacherous in icy weather. These sidewalks must be realigned both vertically and horizontally to meet the VA’s Barrier Free Design (Photograph 1).

![Photographs 1 & 2](image1.png)

Photographs 1 & 2. (1) View looking north from the Omaha VAMC main hospital building showing sloped walkways. (2) View looking north at the main entrance of Omaha VAMC main hospital building constructed in 1950.

According to the 2009 Feasibility Study, the facilities currently housing Ambulatory Care services are mechanically deficient. The buildings are served by a combination of 1950’s induction units and 1970’s unit convectors (Photograph 2). These systems are in poor condition and require replacement. The condition of the distribution, control systems, and ventilation systems correspond with the condition of the equipment they serve. Exhaust fans throughout the building are rated poor. The plumbing systems are original to the 1950’s construction (except for the
outpatient addition) and are in need of upgrading, including the fire sprinklers, pumps, fixtures and piping, and medical gas systems. Furthermore, emergency power is deficient for the entire Omaha VAMC with hospital and clinic function not adequately served by existing generators (VA 2009).
2.0 ACC Alternatives

Four initial ACC alternatives were developed and analyzed to address the project purpose and need (VA 2016).

2.1.1 Alternative 1 - No-Action Alternative

Under Alternative 1, the No-Action Alternative, there would be no change to the Omaha VAMC facility and existing Ambulatory Care services. Inclusion of a No-Action Alternative is prescribed by the CEQ regulations and serves as a benchmark against which proposed Federal actions are evaluated.

2.1.2 Alternative 2 - New On-site ACC

Under Alternative 2, a new ACC facility housing all Ambulatory Care services would be constructed at the existing Omaha VAMC campus (similar to the proposed action for the long-term campus plan, VA 2009). The ACC would include five modern, infection-free operating rooms for ambulatory surgery. The building would also provide the appropriate space to support a PACT-designed layout for Primary Care and Specialty Clinics. Space vacated within the main hospital building due to construction of the ACC, estimated to be approximately 100,000 DGSF, could then be repurposed to meet additional space and reorganization needs of the Omaha VAMC.

2.1.3 Alternative 3 - New Off-site ACC

Under Alternative 3, the ACC facility would be relocated away from the main Omaha VAMC campus. Ambulatory Care services, including primary care and surgical services, would be provided in a newly constructed or developed off-site facility. Space vacated within the main hospital building due to construction of the ACC, estimated to be approximately 100,000 DGSF, could then be repurposed to meet additional space and reorganization needs of the Omaha VAMC.

2.1.4 Alternative 4 - Third-Party Contracting

Under Alternative 4, all Ambulatory Care services would be contracted out to an off-site medical provider at a non-Omaha VAMC facility. Space vacated within the main hospital building due to construction of the ACC, estimated to be approximately 100,000 DGSF, could then be repurposed to meet additional space and reorganization needs of the Omaha VAMC.

2.2 ACC Alternatives Eliminated from Consideration

Alternatives 3 and 4 were eliminated from consideration.

Alternatives 3 and 4 would both meet the project purpose; however, the Ambulatory Care services would be removed from the Omaha VAMC campus, perpetuating the fragmentation of services and staff. Although Ambulatory Care services may be consolidated at a new location, removing Ambulatory Care services from the Omaha VAMC campus would not support the PACT patient-
centric care design that has been adopted by the VA. At the expense of the patient, primary care services would become more isolated and disconnected from specialty clinics and services.

To varying degrees, both Alternatives 3 and 4 would require duplication of clinical support facilities (mechanical and technical), and/or administration and staff positions to effectively manage the facility or contracted medical provider. These additional costs make these concepts less desirable (VA 2016).

2.3 ACC Alternative Concepts Retained for Detailed Analysis

Two concepts were carried forward for detailed analysis: Alternative 1 – No-Action Alternative; and Alternative 2 – New On-site ACC (Proposed Action).

2.3.1 No-Action Alternative

Under the No-Action Alternative, there would be no change to the Omaha VAMC from its existing condition. This alternative would not address the growing health care needs of the Omaha VAMC. The facility would continue to function with severe space, functional, and technical deficiencies and diminishing capability. In particular, the following conditions would continue to exist at the Omaha campus:

- The campus would have a total overall space deficiency of approximately 325,714 DGSF for the projected workload analysis for 2025;
- Multiple departments would continue to be limited in their required space;
- Ambulatory Care functions would remain scattered throughout the main hospital building;
- Surgical Service would remain undersized and there would be no separation between clean and dirty corridors;
- All outdated mechanical, electrical, information technology (IT), sewer, water, and power systems would remain; and
- The Ambulatory Care services housed within the main hospital building would not adhere to the PCMH or PACT model, limiting patient care and satisfaction.

2.3.2 Proposed Action Alternative

The Proposed Action is based on retaining all the services at the Omaha VAMC, by constructing a new ACC on site to replace the existing facilities. Figure 2-1 shows the proposed location of the new ACC overlain on the present VAMC site. A schematic rendering of the new ACC is also shown on Figure 2-2.

The Proposed Action consists of constructing an approximately 160,000 square-foot building to support ambulatory surgery, PACT clinical care, lobby, police service, radiology, support, and reception spaces on the existing Omaha VAMC campus. The new facility would include all electrical, mechanical and structural space to support the building as well as a 3,000 square-foot connecting corridor to the main hospital building.
The new ACC would include three levels with a partial fourth floor mechanical penthouse. The building would primarily serve an outpatient veteran population and would be joined to the existing Omaha VAMC hospital building via a 3,000 square-foot connecting corridor consisting of two routes that would separate public/patient traffic from service/staff traffic moving between the buildings. The main entry level would be on the ground floor and would include lobby and reception, ambulatory surgery, a specialty PACT, radiology, and a central utility room. The first level of the new ACC would be on the same level as the ground floor of the existing Omaha VAMC hospital building, and would include the connecting corridor that can be accessed via elevator from the new ACC ground floor main entrance. The connecting corridor would be enclosed and protected from the weather and vehicular traffic. The first and second floors would each include four PACTs and circulation space, with group spaces, educational rooms, and public spaces situated around the perimeter of each floor.

The new ACC would be built northeast of the existing main hospital building on land that currently is a surface parking lot (Figure 2-1; Photographs 3 & 4). The ground floor main entrance would be located on the northwest corner of the building and would be serviced by a new circular drive extending east from Nimitz Drive for pick up and drop off. The building would be surrounded by green space on all sides, with access to the main hospital building from the south via Center Street. Puller Drive would be closed due to the connecting corridor between the new ACC and the main hospital building and green space expansion. As a result, primary access to the main hospital building entrance would be from the north via Woolworth Avenue on Nimitz Drive. The circular loading zone at the main hospital building entrance would remain in place. Although direct access to the new ACC and main hospital building from Puller Drive would no longer be possible, Waesche Drive would be extended north providing access to parking for the new ACC, and an indirect route to the main hospital entrance from Center Street.

Photographs 3 & 4. View looking southwest (3) and west (4) toward the proposed location of the new ACC. The new ACC would be constructed on an existing surface parking lot north of the Omaha VAMC main hospital building (shown in the background of Photograph 3).

The existing parking lot north of the new ACC would be restriped and used as the primary patient and visitor lot. Overall, construction of the new ACC would result in the temporary loss of
approximately 255 parking spaces. Construction of two additional parking garages for staff and visitors have been proposed as part of a long-term campus plan, but would be constructed as a separate project from the new ACC. Figure 2-3 shows the proposed location of the two new parking garages, and other proposed facilities including a Fisher House, new veteran’s housing, and a new health care building.

Correction of Deficiencies

This Proposed Action would provide approximately 160,000 additional square feet dedicated to ambulatory care, allowing for new primary care clinics to be designed and constructed to meet the needs of each PACT team, including appropriate women veterans’ health care spaces.

This new building would also allow expansion of the ambulatory surgery portion of the ORs, with more complicated surgery procedures remaining at the Omaha VAMC main hospital building. While the Proposed Action does not completely mitigate the current Omaha VAMC OR space needs with regards to infection control deficiencies, modern equipment requirements, and clean/dirty corridor separation for equipment, patients, and staff; it does ensure that ambulatory surgery procedures could be conducted in an infection-free environment.

The Proposed Action would retain all Ambulatory Care services within the existing Omaha VAMC campus and would facilitate future Omaha VAMC campus upgrades. Areas of the main hospital building vacated by Ambulatory Care services would allow for the expansion, reorganization, and/or consolidation of ORs and other Omaha VAMC services. This would alleviate congestion and fragmentation of services, potentially contributing to improved patient care. Constructing the new ACC at the Omaha VAMC main campus would promote the seamless integration of Ambulatory Care with additional Omaha VAMC services, increasing patient satisfaction and improving the overall patient experience.

The Proposed Action would temporarily reduce available parking, with additional parking provided by planned future projects. The Omaha VAMC would provide an off-site parking lot to mitigate for temporary parking losses. Pedestrian facilities would be significantly upgraded and would be compliant with the American with Disabilities Act (ADA). Specific upgrades would include the widening of walkways and the elimination of non-ADA compliant grades that must currently be navigated when accessing the main hospital building. The Proposed Action would also provide two options for patient loading and unloading by maintaining the primary entrance at the main hospital building and construction a new primary entrance at the new ACC.

The new ACC would be a state-of-the-art facility and constructed according to modern medical facility standards and will include new mechanical, electrical, and IT systems currently lacking in the main hospital building. The existing sewer system and water lines directly serving the new ACC would also be upgraded.

Funding and Cost

The total cost of the Proposed Action is expected to be approximately $85 million (M). The VA cost of construction for this option is limited to $56M, the amount previously appropriated for the replacement hospital project as part of the long-term campus plan discussed in the 2009
Feasibility Study (VA 2009) and 2012 Final EA document (VA 2012). Required funding in excess of $56M would be provided under the authority of Public Law (PL) 114-294, Communities Helping Invest through Property and Improvements Needed (CHIP IN) for Veterans Act of 2016, which allows the VA to accept donations for facilities at no additional cost to the government. As such, donors have been identified and funding has been allocated to construct and complete the new ACC as proposed in the VA Strategic Capital Investment Plan (SCIP) VHA23-636-2015-27431 (VA 2016).
Figure 2-1. Proposed Ambulatory Care Center Site Plan
Figure 2-2. Proposed Ambulatory Care Center Schematic Rendering
(Omaha VAMC main hospital building seen in background)
Figure 2-3. Omaha VAMC Future Buildings